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J. Phys. A: Math. Gen. 13 (1980) L359-L363. ,Printed in Great Britain 

LETI'ER TO THE EDITOR 

Gravitational monopoles with classical torsion 

I M Benn, T Derelit and R W Tucker 
University of Lancaster, Department of Physics, Lancaster, UK 

Received 6 March 1980 

Abstract. A model is constructed for a space-time geometry that contains Einstein and 
Stephenson-Yang gravity together with a gravitationally charged vector field in the adjoint 
representation of the structure group. The model is formulated as an SL(2C) gauge theory 
for a metric connection and a field of orthonormal frames. A simple ansatz renders a 
solution to the completely coupled system which, it is argued, has the characteristic of a 
gravitational monopole. 

Classical solitons have been discovered in a number of nonlinear field theories. Apart 
from their intrinsic interest, they are widely expected to play a fundamental role in 
understanding the full properties of such field theories. Their theoretical existence 
seems to depend upon inherent nonlinearities of the system, and very often a local 
gauge covariance is also manifest. 

Since gravity may be viewed as a local gauge theory it is natural to enquire about its 
solitonic content. Indeed, considerable investigation into its Euclidean instanton 
structure (Hawking 1979) has been carried out. In this Letter we report on a series of 
classical solutions for a theory of gravity in a Minkowski signatured space-time, some of 
which closely resemble in analytic form the magnetic monopole solutions of the 
Georgi-Glashow theory (Georgi and Glashow 1972). 

Our basic approach is to regard the theory as endowing a four-dimensional 
space-time manifold with a series of distinct local structures: 

(1) A metric g with signature (-+++). 
(2) A metric compatible connection w. 
(3) Four frame fields e a  which are locallyorthonormal, i.e. in terms of these l-forms 

3 

k = l  
g = - e O @ e O +  1 e k @ e k .  

The fundamental metricity condition is ensured by taking w to be an SL(2C) algebra 
valued l-form, since this generates the covering group of the Lorentz structure group. 
Purely gravitational interactions are constructed to be covariant with respect to this 
connection. 

The development of the theory will be expressed using the compact language of the 
exterior calculus. The analysis has been carried out using the recently developed 
method of complex quaternionic forms (Tucker 1980), although our results may be 
readily translated into expressions involving real forms. 

t On leave from the Physics Department, Middle East Technical University, Ankara, Turkey. 
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There has been considerable discussion in the literature about the nature of gravity 
as a gauge theory. Our view is that any theory with a local gauge invariance is a gauge 
theory. Whether the connection of the principle bundle is dictated by an action 
principle (on the base space) or is given by other criteria is largely a matter of detail. For 
the internal symmetry group an action 4-form, quadratic in the curvatures, is often 
extremalised for this purpose. For Einstein gravity a different form is adopted, since the 
metric of the base manifold is also treated as a dynamical degree of freedom. 

In the Georgi-Glashow model the magnetic monopole (t’Hooft 1974, Polyakov 
1974) is constructed by finding an extremum in the static field energy of a system of 
coupled isovector Lorentz scalars and SU(2) vector fields. For an analogous system of 
SL(2C) vector fields coupled to other fields in an inherently curved space, one must 
seek to isolate potential solitons by other means, since the local energy density including 
the gravitational contributions is not covariantly defined. It is also important to treat the 
connection and metric variations as independent, and derive separate systems of 
equations for their dynamical determination. This will naturally lead to systems of 
Lorentz frames that may have non-zero torsion. Whether or not the classical torsion has 
observable effects (besides the soliton) of course depends upon the nature of its 
coupling to other phenomena (Hehl et al. 1976). 

In Einstein gravity it is customary to identify the weak field disturbances from the 
Minkowski metric as gravitons. These will be distinguished from the vector fields 
associated with the propagating connection. We are aware of some of the difficulties 
associated with quantising these degrees of freedom with certain actions, and will 
consequently restrict ourselves in this paper to classical considerations. 

The theory that we investigate is described in terms of a connection U, frame e and 
field 4 that are fixed by extremalising the action density 

(1) 

(2) 

N e ,  U, 4 )  = R e  S [ P  A *PI 

p = R + i*Dq5 + pe A E 

where 

and R is the SL(2C) curvature 2-form. The field q5 is a complex q-vector valued l-form 
(with 6 x 4 conventional components 4 a b f i )  transforming under the adjoint represen- 
tation of SL(2C) as 4 + @a, and Dq5 = d 4  +2V(w A 4 )  is its exterior covariant 
derivative. The * defines the usual Hodge dual with respect to the space-time metric. In 
terms of real forms 

A =  p a b  A *Pab,  a, b = 0, 1 ,2 ,3 ,  (3) 

p a b = R a b + I  2E ab cd*Df#JCd +p*(ea  A e b ) .  (4) 

We choose this action since up to a local exact form it expands as 

AI = R e  S(R A *R +D4 A * D ~  +2ipR A e A E-2ipD4 A e A E+ip2e A E A e A E ) .  ( 5 )  

Thus we can identify contributions from the Einstein and Stephenson-Yang (Stephen- 
son 1958, Yang 1974) action together with terms describing the active coupling of the 4 
field to the metric and connection. The last term, with arbitrary real constant p, is a 
cosmological one. For vanishing 4 the theory admits the Schwarzschild solution (with 
p )  and will accommodate the classical tests. The classical field equations for the 
connection may be written 

D*p = 2i V(q5 A p )  (6) 
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or 

D* R = -2 V( 4 A *D4) + 2ip V ( 4  A e A E) - i p D  ( e  A E). (7) 
From 4 variations one obtains 

Dp=O 

or 

D*D4 = ipD(e A E). 

Since the source term here may be written 2 ipV(T A E) in terms of the torsion T, we 
may identify 4 as being partially generated by the source of torsion in the theory. 
Finally, by varying the orthonormal frames, the Einstein equation may be expressed as 

9?[4ipud A ( * p ) ]  = i.r (10) 

where the anti-Hermitian 3-form 7 has components 

7, = R e S [ i x u p ~ * p + p  ~ix ,*p-2 ip  ~ i x = ~ 4 - 2 i j ~ ~ ( * D 4 ) ~ * p ] ,  

(Y = 0, 1,2,  3, ix,(eP) = 8:. (11) 
Writing the classical field equations (6), (8), (10) in terms of the complex 2-form p 
enables us to locate a solution to this coupled set given by p = 0. Since AI = 
A - 2d[Im S(R A 4 ) ]  and A vanishes for this solution, the action AI becomes a local 
exact form. By analogy with the SU2 theory of monopoles in the Georgi-Glashow 
model, it is tempting to regard 4 as a kind of SL(2C) Higgs field and p = 0 as a 
gravitational Bogomol’ny (1976, Coleman et a1 1977) condition. We stress however 
that the theory here is fully covariant and no static or Euclidicity postulate has been 
made yet. Furthermore R contains both ‘magnetic’ and ‘electric’ type curvatures in any 
frame of reference in general. 

To solve the equations 

*R - iD4 + ipe A 2 = 0 (12) 

for the classical degrees of freedom, we shall look for a static spherically symmetric 
system, where the metric is Minkowskian and R 3  polar coordinates are used in the 
space-like sections t = constant. 

e = d(it + rN).  (13) 

In terms of R 3  Cartesians, r 2 = X ? = 1  xi2 and N =Zlz1 (x‘ /r)e*,  is a field of q-vector 
normals to spheres about the R 3  origin. (The choice (13) is in fact less general than it 
need be when p = 0. Any metric such that e’ = A (r)e  for a real function A will also yield 
the equations (16), (17), (18), (19), reflecting a conformal invariance in the nature of our 
ansatz (12). The behaviour of the system at infinity is more precisely discussed in terms 
of a compactified Minkowski (Howe and Tucker 1978) space with such a metric, 
although in this note we shall be content with (13).) For the other fields a ‘dyon’-like 
ansatz is employed. 

o = $ [ K ( r ) -  l]NdN-;i(J(r)/r)Ndt, (14) 
4 = &L(r) - 1]NdN - $ (H(r)/r)Ndt, (15) 

where K, L, J and H are real functions. Inserting (13), (14), (15) into (12) gives the four 
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coupled equations 

r2(H/r)’ = K 2 -  1 -4pr2, (16)  
rK’ = HK + J ( L  - 1 )  +4pr2, 

rL’ = KJ -4pr2, 

r2(J/r)’ = 2K(L - 1 )  +4pr2. (19 )  
It is observed that if p = 0 and J = 0, L = 1 (pure magnetic ansatz for the connection) 
then the ‘magnetic’ monopole equations arise with solutions (Prasad and Sommerfield 
1975) 

KO = Cr/sinh Cr, (20) 
Ho = Cr coth Cr - 1,  

where we naturally impose the boundary condition that H/r approach a constant C at 
large r and Dq5 vanishes. Although the action in this limit resembles the Georgi- 
Glashow SU(2) model in structure, it should be recalled that the q5 field is a 1-form in 
the gravitational case. Furthermore, although de =0, since the curvature is non-zero 
the resulting monopole space-time will have a torsion form 

T = [Ko(r) - 11 d N  A dr. (21)  
Asymptotically in r the gauge-invariant field strengths of torsion and curvature vanish, 
since Ko(r) + 0 and 

*(T A * F )  = (2/r2)(Ko(r) - l)’, (22)  

Sincl: the metric is Minkowskian the space may be termed asymptotically locally flat. 
The form Re S[R A *RI = -1m S [ R  A D+] in the p = 0 case and hence yields a finite 
density Im S j s z  R A ia,q5 per unit time analogous to the ’t Hooft-Polyakov monopole. In 
the p = 0 sector of the theory the Einstein tensor contribution to the Einstein equation 
is absent. However, for small p one could linearise the equations (16)-(19) with 
solutions of the form 

K(r)=Ko(r)+pK1(r)+.  . . , 
H(r)  = Ho(r) +pHl(r) +. . . , 
- l+L(r )=pL1(r )+ . . . ,  

J ( r )  = p J l ( r )  + . . . , (24) 
and solve them iteratively (on a computer) about r = 0. 

(naked singularities?): 
Besides these monopole-like spaces we observe the following singular solutions 

(a) K = l ,  L = l ,  J = 4pr2, H = -4pr2; (25 )  

(b) K = l ,  L = 1 -2pr2,  J = O ,  H = -4pr2; (26 )  

(4 K = 0, L = l ,  J = 0, H = 0. (27) 

The last solution is the analogue of the Wu-Yang monopole. 
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Conclusion 

We have exhibited a model with classical geometries that contain a non-trivial torsion 
phase and curvatures that are described as a gravitational monopole. The model 
contains a gravitationally charged field q5, inasmuch as it transforms actively under the 
structure group of the theory. Although we can offer no immediate interpretation of 
this field, it is tempting to identify it with a gravitational Higgs field. Indeed, one may 
simulate an SL(2,C) Higgs effect by postulating that q5 = (q5&' defines a local ground 
state for some real q-vector qh0 in a frame with a space-like surface orthogonal to the 
time direction eo. The SL(2,C) groups is then broken down to the covering rotation 
group of the space-like triad (e ' ,  e*,  e 3 )  in the class of frames defined by the above 
ground state. For the monopole geometry a further reduction to U(l)  is manifest, and 
our solution explicitly approaches this ground state for large r. Thus one expects that 
five of the connection vector fields (including ghosts) will dissociate from the field 
belonging to the surviving symmetry. It may be possible to relate q5 to the contortion 
tensor of the space and hence render the theory entirely geometrical, in which case the 
cosmological term may simulate the necessary Higgs potential. Although the physical 
significance of the space-times discussed in this model is by no means obvious, we feel 
that the structure of the model mirrors a number of the features found in the gauge 
theories of non-gravitational interactions, and consequently may merit further investi- 
gation. 
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